Government 2005: Formal Political Theory I Lecture 11

Instructor: Tommaso Nannicini Teaching Fellow: Jeremy Bowles

Harvard University

November 9, 2017

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Overview

* Today's lecture

- Dynamic games of incomplete information
 - Definitions
 - Perfect Bayesian equilibrium (PBE)
 - Examples
- Signaling games
 - Signaling in the labor market (Spence 1973)
 - PBE refinements (domination-based & intuitive criterion)

* What's next (lecture 12)

- Political agency and accountability (Besley 2006)
- Cheap talk games (Crawford and Sobel 1982)

Dynamic games of incomplete information

- Bayesian environment where players have priors on information they do not possess
- And they revise beliefs (forming posteriors) as the sequential interaction with the other players unfolds
- Private information can be on what some players are (hidden information) or on what some players do (hidden action)
- Useful classification in contract theory:
 - Adverse selection/screening models. Uninformed players (about characteristics of informed players) move first
 - E.g., insurance market, voting politicians of unobserved quality
 - Moral hazard models. Uninformed players (about actions of informed players) move first
 - E.g., unemployment benefits, re-voting for incumbent
 - Signaling models. Informed players (about their own characteristics) move first
 - E.g., education in the labor market, entry deterrence in elections, informative lobbying

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Perfect Bayesian equilibrium

► New solution concept: Perfect Bayesian equilibrium

	Complete information	Incomplete information
Static	Nash	Bayesian Nash
Dynamic	Subgame-perfect	Perfect Bayesian

- Key ingredients:
 - Sequential rationality
 - Bayesian updating
- ► In hidden-information games, we can characterize:
 - Pooling PBE
 - Separating PBE
 - But these are not solution concepts, just characterization of the equilibria that may emerge with PBE concept

Perfect Bayesian equilibrium (contd.)

We define PBE as a strategy-belief pair that satisfies the following four requirements:

- A At each information set, the player with the move must have a *belief* about which node in the information set has been reached by the play of the game
- B Given their beliefs, the players' strategies must be *sequentially rational*
- C At information sets *on the equilibrium path*, beliefs are determined by Bayes' rule and the players' equilibrium strategies
- D At information sets *off the equilibrium path*, beliefs are determined by Bayes' rule and the players' equilibrium strategies *whenever possible*

Perfect Bayesian equilibrium (contd.)

Let's define these requirements a little bit more formally:

- A At each $h \in H$, define k(h) as the player with the move; she must have beliefs on each node x of h s.t. $\mu(x) \in [0, 1]$ and $\sum_{x \in h} \mu(x) = 1$
- B A strategy profile $s = (s_1, ..., s_l)$ is sequentially rational at h given μ if $\forall \tilde{s}_{k(h)} \in S_{k(h)}$:

$$E[u_{k(h)}|h,\mu,s_{k(h)},s_{-k(h)}] \ge E[u_{k(h)}|h,\mu,\tilde{s}_{k(h)},s_{-k(h)}]$$

C At each h with Prob[h|s] > 0, $\forall x \in h$, beliefs are given by:

$$\mu(x) = \frac{Prob[x|s]}{Prob[h|s]}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

D At each *h* with Prob[h|s] = 0, beliefs are determined by Bayes' rule and the players' equilibrium strategies *whenever possible* (we'll specify this game by game)

A first example

 To illustrate these requirements, consider the following three-player game

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

p is the belief that player 3 has about player 2 playing L

A first example (contd.)

 The game has a unique subgame, which begins at player 2's singleton information set

	L'	R'
L	(2,1)	(3,3)
R	(1,2)	(1,1)

- The unique NE of this subgame between players 2 and 3 is (L, R'), so the unique SPNE of the entire game is (D, L, R')
- The game has multiple NE, however
 - For example, (A, L, L') is a NE—no player has incentive to deviate unilaterally

A first example (contd.)

- What about the perfect Bayesian equilibrium of this game?
- When player 3 has to move, she must have a belief about whether she is at the left or right node of her information set (requirement A)—let p be the probability she believes she is at the left node
- Consider the strategy-belief pair (D, L, R') and p = 1
- It is straightforward to check that they satisfy requirements A-B-C above (weak PBE)
- They also trivially satisfy requirement D, since there is no information set off this equilibrium path
- ▶ So, the strategy-belief pair (D, L, R') and p = 1 is a PBE

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A first example (contd.)

- Consider the strategy-belief pair (A, L, L') and p = 0
- The strategies and beliefs satisfy requirements A-B-C above (weak PBE): Along the equilibrium path, player 3's information set is never reached, so requirement 3 places no restrictions on player 3's beliefs
- Requirement D, however, does restrict player 3's belief at her information set
 - ► If strategies are given by (A, L, L'), then player 3 cannot have the belief p = 0
 - This belief is inconsistent with player 2's strategy
 - If player 2 is playing L, then player 3's belief must be p = 1 to satisfy requirement D

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ So, the strategy-belief pair (A, L, L') and p = 0 is not a PBE

A second example

- A simple example of signaling game, with 2 types, 2 possible messages, and 2 possible actions
- The sender's type is either θ_1 or θ_2 , the message is either R or L, and the receiver's response is either u or d

A second example (contd.)

- Let p be the receiver's belief that θ = θ₁ given that the sender's message is L, and let q be the receiver's belief that θ = θ₁ given that the sender's message is R
- ▶ Define m(.) as the message of player 1 and r(.) as the response of player 2. A pure-strategy PBE is a triple [(m(θ₁), m(θ₂)), (r(L), r(D)), (p, q)] satisfying requirements A-B-C above
- Requirement D is vacuous in signaling games (the sender's strategy does not restrict the receiver's beliefs off the equilibrium path; that's why we'll discuss PBE refinements in signaling games below)
- ► In this game there are four types of pure-strategy PBE:
 - Pooling equilibria with $m(\theta_1) = m(\theta_2) = L$
 - Pooling equilibria with $m(\theta_1) = m(\theta_2) = R$
 - Separating equilibria with $m(\theta_1) = L$ and $m(\theta_2) = R$
 - Separating equilibria with $m(\theta_1) = R$ and $m(\theta_2) = L$

A second example (contd.)

Pooling on L

- If player 1 picks (L, L), p = 1/2 on the equilibrium path
- Best response of player 2 is r(L) = u
- ▶ What about *r*(*R*) (off the equilibrium path)?
- This must be d, because if it were u, θ₁ would have incentive to deviate from L to R
- Hence, for the equilibrium to be pooling on L, we must have (L, L), (u, d), and p = 1/2
- But what about q? What values the off-equilibrium belief must have to sustain r(R) = d?
- It's easy to see: $q + 0 \le 0 + 2(1 q) \Rightarrow q \le 2/3$
- Any [(L, L), (u, d), p = 1/2, $q \le 2/3$] is a pooling PBE

A second example (contd.) Pooling on R

- If player 1 picks (R, R), q = 1/2 on the equilibrium path
- Best response of player 2 is r(R) = d
- But in this case θ₁ would get zero and have an incentive to deviate to L

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► As a result, there cannot be a PBE with pooling on R

A second example (contd.)

Separating with θ_1 playing L

- Both information sets of player 2 are on the equilibrium path
- Therefore, her beliefs must be: p = 1 and q = 0
- Her best responses are r(L) = u and r(R) = d, that is, (u, d) But in this case θ₂ has incentive to deviate to L (as 2 > 1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

As a result, there cannot be a separating PBE in which m(θ₁) = L and m(θ₂) = R

A second example (contd.)

Separating with θ_1 playing R

- Both information sets of player 2 are on the equilibrium path
- Therefore, her beliefs must be: p = 0 and q = 1
- Her best responses are r(L) = u and r(R) = u, that is, (u, u) Both θ₁ and θ₂ get payoff of 2 and have no incentive
- As a result, [(R, L), (u, u), p = 0, q = 1] is a separating PBE

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Job market signaling

- Consider the following game involving two firms trying to hire a worker of unknown productivity (it's easy to generalize this to a population of workers)
- The worker can have either high or low productivity, but firms do not observe the worker's type. The high-productivity worker can buy education as a signal
- The timing of the game is as follows
- 1. Nature determines the worker's productive ability, $\theta \in \{\theta_L, \theta_H\}$, with $\theta_L < \theta_H$ and $Prob[\theta = \theta_H] = \lambda \in (0, 1)$
- 2. The worker learns θ and chooses an education level, $e \ge 0$
- 3. The firms observe e (but not θ) and simultaneously make wage offers
- The worker accepts the higher wage, w (flipping a fair coin in case of a tie)

- The payoff to the firm that hires the worker is: $\pi = \theta w$
- The payoff to the other firm is: $\pi = 0$
- The worker's payoff is: $u(w, e|\theta) = w c(\theta, e)$
- Assume that c(θ, e) for a given θ is increasing and convex in
 e: ∂c/∂e > 0, ∂²c/∂e² > 0
- ► Assume that both the cost and the marginal cost of e are decreasing in θ: ∂c/∂θ < 0, ∂²c/∂e∂θ < 0</p>
- Assume that the worker's reservation utility is zero (so we don't have to bother about her individual rationality constraint): r(θ_L) = r(θ_H) = 0
- There are tons of different perfect Bayesian equilibria
- Let's try to characterize them

Single-crossing property

- ► The assumption we made on the cross partial, $\partial^2 c / \partial e \partial \theta < 0$, has important implications for the game
- It means that indifference curves in (e, w) for the high vs low type cross just once, and when they do the IC of θ_L is steeper¹

Firms earn zero profits in equilibrium

- Worker's strategy is e(θ)
- Firms' strategy is w(e)
- Bertrand competition between the firms drives profits to zero
- As education has no effect on productivity:²
 - $w(e) = E[\theta|e]$, that is,

•
$$w(e) = \mu(e)\theta_H + (1 - \mu(e))\theta_L$$
,

- where $\mu(e)$ is the (common) firms' posterior: $\mu(e) = Prob[\theta = \theta_H|e]$
- This also means that: $heta_L \leq w(e) \leq heta_H$ for any e
- Now, let's look for PBE that are separating equilibria (SE), that is, PBE where the optimal strategies are different for the two worker's types: e^{*}(θ_L) ≠ e^{*}(θ_H)

Separating equilibria

- **Result 1.** In any SE we must have that:
 - $\mu(e^*(\theta_L)) = 0$
 - $\mu(e^*(\theta_H)) = 1$
 - $w^*(e^*(\theta_L)) = \theta_L$
 - $w^*(e^*(\theta_H)) = \theta_H$
 - Indeed, on the equilibrium path, beliefs must be correctly derived from equilibrium strategies using Bayes' rule
 - ► As firms can disentangle the low type from the high type, they end up offering her productivity to each type
- Result 2. In any SE we must have that:
 - $e^*(\theta_L) = 0$
 - Indeed, there is no point for the low type to waste resources in education if she gets the low wage anyway

Separating equilibria (contd.)

- Consider the SE with e^{*}(θ_L) = 0 and e^{*}(θ_H) = e' in Fig.1: Is it a PBE?
- The answer is no because the pair (e = e', w = θ_H) is above the IC_L associated with e = 0 and thus the low type would have an incentive to mimic the high type by acquiring e'
- In other words, the incentive compatibility constraint of the low type (ICC_L) is violated there:

$$w^*(0) - c(\theta_L, 0) < w^*(e') - c(\theta_L, e')$$

▶ Note that in general the *ICC_L* is given by: $w^*(e^*(\theta_L)) - c(\theta_L, e^*(\theta_L)) \ge w^*(e^*(\theta_H)) - c(\theta_L, e^*(\theta_H))$

Job market signaling (contd.) Figure 1: SE that is not a PBE

Separating equilibria (contd.)

- Consider the SE with e^{*}(θ_L) = 0 and e^{*}(θ_H) = e₁ in Fig.2: Is it a PBE?
- The answer is yes because the pair (e = e₁, w = θ_H) is not above the IC_L associated with e = 0 and thus the low type has no incentive to mimic the high type by acquiring e₁
- ▶ In other words, the *ICC*^{*L*} is met there:

$$w^*(0) - c(\theta_L, 0) \ge w^*(e_1) - c(\theta_L, e_1)$$

- ▶ But what about the high type? Her IC_H in the SE is clearly above the one associated with e = 0
- Moreover, there are many firms' posterior beliefs and associated w(e) that can induce the high type not to acquire a lower e > 0, as this would result in the possibility to be confused with the low type and get a lower wage
- The purple curve w(e) in Fig.2 is one of the many wage curves/beliefs that can sustain this SE

Job market signaling (contd.) Figure 2: SE that is a PBE

- nac

Welfare analysis of separating equilibria

- By the same reasoning we can find w(e) that sustain many other SE, namely, all e^{*}(θ_H) ∈ [e₀, e₁] in Fig.3 (green interval)
- Education levels above e₁ are not sustainable because the ICC_H is violated there (i.e., the high type would prefer the low wage with no education)
- ▶ Note that in general the *ICC_H* is given by:

 $w^*(e^*(\theta_H)) - c(\theta_H, e^*(\theta_H)) \ge w^*(e^*(\theta_L)) - c(\theta_H, e^*(\theta_L))$

- There's an infinite set of SE as the PBE concept imposes almost no restriction on the beliefs off the equilibrium path
- These SE can be Pareto ranked: Firms always gets zero and the low type θ_L, but the high type is better off with e₀
- If E[θ] > θ' in Fig.3, we have the paradox that education makes everybody worse off, as also the high type would prefer the situation with incomplete information but no signaling

Job market signaling (contd.) Figure 3: Set of all SE that are PBE

Pooling equilibria

- We now turn to PBE that are **pooling equilibria (PE)**, that is, PBE where the optimal strategies are identical for the two worker's types: e^{*}(θ_L) = e^{*}(θ_H) = e^{*}
- In this situation, firms posterior is equal to the prior and we must have: w^{*}(e^{*}) = λθ_H + (1 − λ)θ_L = E[θ]
- Consider the PE $e^* = e_2$ in **Fig.4**:
 - ► The ICC_L is (barely) met (note that when the ICC_L is met, the ICC_H is trivially met in PE)
 - And, given the (purple) w(e) (or any wage/beliefs curve below IC_H off equilibrium), also the high type prefers the PE instead of getting more education
 - Hence, this is a PBE
- ► This holds for all e^{*} ∈ [0, e₂], as ICC_L violated above e₂; the green interval in Fig.4 is the (infinite) set of PBE/PE
- Equilibrium with $e^* = 0$ Pareto dominates all the others

Job market signaling (contd.) Figure 4: Set of all PE that are PBE

≧ _ _ のへ (?)

PBE refinements

- In the above discussion, Pareto-dominated PBE are sustained by off-equilibrium firms' beliefs
- Indeed, the multiplicity of equilibria arises from great freedom we have in choosing beliefs off the equilibrium path with the PBE concept
- Are all of these beliefs really reasonable?
- Now, we'll impose stricter definitions of "being reasonable" and restrict the set of PBE in this way

- ► In particular, we'll consider two PBE refinements:
 - Domination-based refinements of beliefs
 - Intuitive criterion

Domination-based refinements

- Consider e^{*}(θ_H) = e₁ in Fig.3. This SE sustained by belief that µ(e) < 1 for e < e₁
- Are these beliefs reasonable?
- Indeed, you can never convince θ_L to get e ∈ (e₀, e₁], regardless of what firms believe of her type as a result
- We should rule out these beliefs, based on dominated strategies by θ_L
- Action *e* is dominated for θ_i if there's *e*' s.t.

 $Min_{w(e')}u(e',w(e'),\theta_i) > Max_{w(e)}u(e,w(e),\theta_i)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Domination-based refinements (contd.)

- Off the equilibrium path, after observing *e*, firms should believe *Prob*[θ = θ_i] = 0 if *e* is dominated for θ_i (if possible, i.e., if *e* is not dominated for all types)
- ▶ With this refinement, any $e > e_0$ is dominated by zero for θ_L and then we should have $\mu(\theta_H | e > e_0) = 1$
- No SE with $e > e_0$ survives this refinement
- Moreover, we should also rule out any PE in which θ_H is worse off with respect to (w = θ_H, e = e₀) (try to draw the new set of PE sustainable with this refinement)
- This also implies that if E[θ] < θ' in Fig.3, no PE survives this refinement and we have a unique SE</p>
- But if E[θ] ≥ θ', the set of (refined) PBE is made up of the SE with e*(θ_H) = e₀ in Fig.3 plus a subset of the green interval of PE in Fig.4

Intuitive criterion

- Let's now consider an even stricter PBE refinement
- Definition. Action e is equilibrium dominated if θ_i's equilibrium payoff is greater than θ_i's highest payoff from e:

$$u^*(\theta_i) > Max_{w(e)}u(e, w(e), \theta_i)$$

- ▶ Intuitive criterion. Off the equilibrium path, after observing *e*, firms should believe $Prob[\theta = \theta_i] = 0$ if *e* is equilibrium dominated for θ_i (if possible)
- Consider the PE in Fig.5:
 - ► To sustain it, µ(θ_H|e) < 1 if e ∈ (e', e''), otherwise θ_H deviates from pooling
 - But if firms observe e ∈ (e', e'') while expecting PE, by the intuitive criterion, they should place zero probability to the fact that the worker is θ_L
 - As a result, the intuitive criterion kills all PE
 - The SE with e^{*}(θ_H) = e₀ is the unique equilibrium satisfying the intuitive criterion

Intuitive criterion (contd.) Figure 5: Intuitive criterion kills all PE

Where are we?

- We have (briefly) studied dynamic games of incomplete information (in particular the sub-set of signaling games)
- References:³
 - Lecture slides \rightarrow 11 (final folder)
 - Osborne \rightarrow chapter 10
 - ▶ Gibbons → chapter 4
- In the next class, we'll extend this discussion by:
 - Studying a game of political accountability
 - Discussing cheap talk games (with costless signals)