Government 2005: Formal Political Theory I Lecture 12

Instructor: Tommaso Nannicini Teaching Fellow: Jeremy Bowles

Harvard University

November 16, 2014

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Overview

Political agency and accountability (Besley 2006)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Cheap talk games (Crawford and Sobel 1982)
 - Politicians and policy advisers

Political accountability

* Setup

- Two periods: $t \in \{1, 2\}$
- Politician set policy: $e_t \in \{0, 1\}$
- State of the world: $s_t \in \{0,1\}$
- Voters' payoff: $\Delta > 0$ if $e_t = s_t$, zero otherwise
- Discount factor (common to politician and voters): $\beta < 1$
- Two types of politician, congruent vs dissonant: i ∈ {c, d}, with prior equal to Prob[i = c] = π

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Both types get E (ego rents) when in office
- *c*-type also gets Δ when $e_t = s_t$
- *d*-type also gets r_t when $e_t = 1 s_t$
 - $r_t \sim G(r)$ in [0, R] with $E(r) = \mu$
 - We assume $R > \beta(\mu + E)$ (we'll see why)
- Hence, politician's strategy: $e_t(s, i)$

* Timing

- 1. Nature decides *i* of incumbent politician and *s* (both unobserved to voters)
- 2. Nature draws r_1 from G(r)
- 3. Incumbent decides e_1
- Voters observe outcome (Δ or zero) and decide whether to reelect the incumbent or to draw a new politician (congruent with probability π)
- 5. Nature draws r_2 from G(r) and the politician in office decides e_2 ; payoffs are determined

- What are the PBE of the model?
- In period 2, we simply have that:

•
$$e_2(s,c) = s_2$$

- $e_2(s,d) = 1 s_2$
- In period 1, we have that:
 - ► e₁(s, c) = s₁ (congruent politician always do what voters want provided they reelect him for doing so)
 - Prob[e₁(s, d) = s₁] = λ (index of political discipline of dissonant politician)

Voters' posteriors:

$$\hat{\pi} = Prob[i = c|e_1 = s_1] = rac{\pi}{\pi + (1 - \pi)\lambda} \ge \pi$$

$$\hat{\hat{\pi}} = Prob[i=c|e_1=1-s_1]=0<\pi$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Hence, if ∆ observed, incumbent is reelected (sequentially rational behavior by voters)

 What's the best response by a dissonant politician? (λ endogenous)

•
$$e_1 = s_1$$
 iff $r_1 < \beta(\mu + E)$

• As a result,
$$\lambda = G(\beta(\mu + E))$$

As we assumed R > β(µ + E), ICC_d is met to sustain separating outcome for at least some dissonant politicians

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- What happens if $R \leq \beta(\mu + E)$?
- We have identified PBE:

•
$$e_k^*(s, c) = s_k$$

• $e_2^*(s, d) = 1 - s_2$
• $e_1^*(s, d) = s_1$ if $r_1 < \beta(\mu + E)$
• $e_1^*(s, d) = 1 - s_1$ if $r_1 \ge \beta(\mu + E)$
• $\hat{\pi} = 0$
• $\hat{\pi} = Prob[i = c|e_1 = s_1] = \frac{\pi}{\pi + (1 - \pi)G(\beta(\mu + E))}$

- Are there other PBE?
- ► No complete pooling on e₁ = s₁ is possible (high-rent dissonant politician cannot be convinced by any belief)
- But what about pooling on $e_1 = 1 s_1$?
- To sustain this equilibrium, we must have: $Prob[i = d|e_1 = s_1] = 1$ off the equilibrium path
- So that the congruent politician is not reelected when playing $e_1 = s_1$
- ▶ In this case, $e_1^*(s,c) = 1 s_1$ iff: $(1 \beta(1 \pi))\Delta < \beta E$
- This is another PBE
- It is easy to see, however, that this pooling PBE doesn't survive the intuitive criterion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

* Welfare analysis

- $V_1(\lambda) = [\pi + (1 \pi)\lambda]\Delta$
- $V_2(\lambda) = \pi [1 + (1 \pi)(1 \lambda)] \Delta$
- $W(\lambda) = V_1(\lambda) + \beta V_2(\lambda)$
- W increasing in λ
- W increasing in π
- ▶ Negative correlation between welfare and political turnover (i.e., $(1 \pi)(1 \lambda)$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Comparing V₁ and V₂, positive analysis of term limit: discipline effect vs selection effect

Cheap talk games

- The structure of cheap talk games is the same as that of signaling games:
 - 1. Nature draws a type t for the sender
 - 2. The sender observes t and chooses a message m
 - 3. The receiver observes m (but not t) and chooses an action a
 - 4. Payoffs $U_S(t, a)$ and $U_R(t, a)$ are determined
- ► The difference is in the payoffs → the messages sent by the sender do not directly affect the payoffs of either the sender or the receiver
- Payoffs depend only on the sender's type and the receiver's action
- Cheap talk is really cheap, that is, costless, non-binding, and non-verifiable

Cheap talk games (contd.)

- The payoffs of the sender and receiver must satisfy three necessary conditions in order for cheap talk to be informative:
 - 1. Different sender types have different preferences over the receiver's actions
 - 2. The receiver prefers different actions depending on the sender type (same condition in signaling games)
 - 3. The receiver's preferences over actions are not completely opposed to the sender's preferences
 - The sender and receiver must have some common interests
- We can characterize **pooling** (uninformative) equilibria, as well as **separating** or **partially separating** equilibria (where some information about the sender's type is conveyed)

Cheap talk games (contd.)

- In cheap talk games there is always a pooling (uninformative) equilibrium, in which the messages are ignored by the receiver and all senders send the same message
 - This is sometimes called a "babbling" equilibrium
- The receiver believes that all sender types will send the same message
- Off-equilibrium beliefs must ensure that all sender types send the same message
 - E.g., the receiver believes that, if a sender deviates, she must have an average type
- Then, the message is uninformative and the receiver's posterior belief is equal to his prior belief
- We have an equilibrium since nobody has an incentive to deviate

Cheap talk games (contd.) Example 1

Let's consider the following payoff examples, with two sender types t_L and t_H, and two actions a_L and a_H

	tL	t _H
aL	(2,1)	(1,0)
а _Н	(0,0)	(0,1)

- Note: This is a payoff matrix but not as a function of player's actions
- The receiver want to play a_L with t_L and a_H with t_H
- ► However, type-L and type-H both prefer the action a_L to the action a_H
- So, both senders want to send the message $t = t_L$
- The receiver cannot believe the t_L sender's message
- The first condition discussed above is violated

Cheap talk games (contd.) Example 2

	tL	t _H
aL	(0,1)	(1,0)
а _Н	(2,0)	(0,1)

- The preferences of the sender and receiver are diametrically opposed
 - ▶ When the sender's type is *L*, the sender prefer the action *a_H* but the receiver prefers *a_L*
 - ▶ When the sender's type is *H*, the sender prefer the action *a*_L but the receiver prefers *a*_H
- The sender always wants the receiver to be deceived about his type
- ► So, the receiver cannot believe the sender's message
- The third condition discussed above is violated

Cheap talk games (contd.) Example 3

	tL	t _H
aL	(2,1)	(0,0)
ан	(0,0)	(1,1)

- The preferences of the sender and receiver are perfectly aligned, and the sender can truthfully reveal his type
- Denote q and p as the belief that a high type sent the message m(t_L) and m(t_H), respectively
- ▶ The following is a perfect Bayesian equilibrium: $[(m(t_L), m(t_H)), (a(m(t_L)), a(m(t_H))), (q(m(t_L)), p(m(t_H)))] = [(t_L, t_H), (a_L, a_R), (0, 1)]$
- All conditions discussed above are met

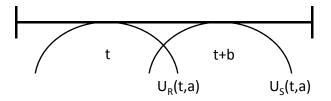
Politicians and policy advisers

- Let's consider a more general cheap talk model with a continuum of types/messages
- ► A politician/decision-maker (the receiver) must choose a policy (the action) from the interval [0, 1]
- An expert/adviser (the sender) has information about what the best policy is
- The adviser does not have exactly the same preferences of the politician—rather, the adviser always prefers policies that are slightly higher

- More precisely, the sender's type is t and $t \sim U[0,1]$
- An alternative way to see this game is that t is the state of the world, which the expert learns about
- Denote the policy chosen by the politician as a
- The politician's payoff is $-(a t)^2$
- The adviser's payoff is $-(a t b)^2$, where $b \ge 0$
- Then, t is the bliss point of the politician, and t + b the bliss point of the adviser
- If the sender's type is t, then the sender has received private information about the best policy for each player

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

When the sender's type is t, the politician has quadratic preferences with ideal point at t, and the adviser has quadratic preferences with ideal point at t + b, as depicted below



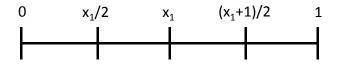
- The larger is b, the greater is the adviser's "bias" in favor of higher policies
- When b is close to 0, then the interests of the politician and the adviser are closely aligned

- All perfect Bayesian equilibria are equivalent to partially pooling equilibria of the following form
- ► There are n ≥ 1 intervals [0, x₁), [x₁, x₂), ..., [x_{n-1}, 1] such that all types in the same interval *convey* the same message, but types in different intervals *convey* different messages
- ► The pooling/babbling equilibrium, with just one interval, is the case with n = 1
- ► We might assume that the message sent by the types in the interval [x_k, x_{k+1}) is simply "t is in [x_k, x_{k+1})"
- There is a maximum number of intervals, which depends on b
- ▶ Crawford and Sobel (1982) show that when $b \rightarrow 0$, $n \rightarrow \infty$, and thus, there is perfect separation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

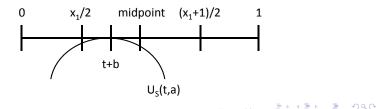
- ► To see how this works, consider the PBE with a 2-interval equilibrium, i.e., n = 2
- We must find a point *x*₁ such that:
 - ▶ All types with $t \in [0, x_1)$ prefer sending the message "t is in $[0, x_1)$ " to the message "t is in $[x_1, 1]$ "
 - All types with t ∈ (x₁, 1] prefer sending the message "t is in [x₁, 1]" to the message "t is in [0, x₁)"
 - The receiver updates his belief about the sender's type using Bayes' rule
 - And chooses policy to maximize his expected payoff, given his updated belief

- ▶ Given the message "t is in [0, x₁)" Bayes' rule implies that the receiver's posterior belief is that t ~ U[0, x₁)
 - ► That is, f(t) = 1/x₁ for t < x₁, and f(t) = 0 for t ≥ x₁. The receiver's optimal action is then a = x₁/2



• Similarly, given the message "t is in $[x_1, 1]$ " the receiver's posterior belief is that $t \sim U[x_1, 1]$, and his optimal action is then $a = (x_1 + 1)/2$

- If we are looking at an equilibrium, then all senders with t ∈ [0, x₁) must prefer the policy x₁/2 to the policy (x₁ + 1)/2
- Also, all senders with t ∈ [x₁, 1] must prefer the policy (x₁ + 1)/2 to the policy x₁/2
- Since the sender's preferences are symmetric about his ideal point, he prefers x₁/2 to (x₁ + 1)/2 iff x₁/2 is closer to his ideal point than (x₁ + 1)/2
- ► This is true iff t + b is less than the midpoint between x₁/2 and (x₁ + 1)/2



- The sender's preferences are continuous in his type
- So, at an equilibrium, a sender with type t = x₁ must be indifferent between the policies x₁/2 and (x₁+1)/2
- That is,

$$\left(\frac{x_1}{2} - x_1 - b\right)^2 = \left(\frac{x_1 + 1}{2} - x_1 - b\right)^2$$
$$-\left(\frac{x_1}{2} - x_1 - b\right) = \frac{x_1 + 1}{2} - x_1 - b$$
$$2(x_1 + b) = \frac{x_1 + 1}{2} + \frac{x_1}{2}$$
$$x_1 = \frac{1}{2} - 2b$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- First, note that x_1 is uniquely determined for a given bias b
- Second, note that $x_1 \ge 0$ iff $b \le \frac{1}{4}$
- That is, if b is too large, then only babbling can occur in equilibrium
- Useful communication is only possible when b is small enough, that is, when the preferences of the politician and his advisor are not too dissimilar
- Third, $x_1 < \frac{1}{2}$, so the first interval is *shorter* than the second
- Thus, in a sense, and on average, advisers whose preferences are closer to those of the politician send "more informative" messages than advisers whose preferences are farther away

- * Possible remedies:
- Extensive communication
- Delegation
 - If policy bias not too large, delegation is better than any cheap talk equilibrium
- Contracts
 - Contracts are very effective but costly for the politician (i.e., full revelation is always feasible but never optimal)

- Multiple senders
 - How should the politician extract information, with simultaneous or sequential talks? Divide and rule?