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Lecture 2: Overview

I Nash equilibrium: Discussion

I Nash equilibrium: Applications
I Collective action and public goods
I Collective action and interest groups
I Strategic substitutes vs strategic complements

I Mixed strategies

I Flashback I: Dominated strategies

I Flashback II: Rationalizable strategies



Nash reloaded

I Remember our definition of Nash equilibrium:

A strategy profile s = (s1, ..., sI ) constitutes a Nash equilibrium of
the game ΓN = 〈I , Si , ui (.)〉 if for every player i = 1, ..., I :

ui (si , s−i ) ≥ ui (s
′
i , s−i ), ∀s ′i ∈ Si

I It means that each player’s choice is best response to
strategies actually played by the others

I More than rationality plus common knowledge (see
rationalizability below): here, conjectures/beliefs about what
other players will do must be correct in equilibrium

I Does this make sense?

I A. Lincoln: “You can fool all of the people some of the time,
and some of the people all of the time, but you can’t fool all
of the people all of the time”



Nash reloaded (contd.)

I Define the best-response correspondence (bi : S−i → Si )
for player i in game ΓN as:

bi (s−i ) = {si ∈ Si : ui (si , s−i ) ≥ ui (s
′
i , s−i ), ∀s ′i ∈ Si}

I We can re-define Nash equilibrium of game ΓN as:

Strategy profile (s1, ..., sI ) such that si ∈ bi (s−i ) for every i

I We can think of it as:
I Rest point of some dynamic adjustment
I Focal point (Schelling 1960)
I Stable social convention
I Self-enforcing agreement after non-binding communication



Nash reloaded (contd.)

I Do we have any evidence that people play Nash? We’ll come
back to lab evidence in the last class. A few points for now:

I Correct test must look at both rationality and correct beliefs
I Correct test must induce assumed preferences
I Correct test must replicate steady-state situation

I Let’s go back to our simple games and solve them by
identifying Nash equilibria (if any):

I Prisoner’s dilemma
I Game of chicken
I Assurance dilemma (or “stag hunt”)
I Generals’ dilemma (or “matching pennies”)

I These (simple) strategic games give us important insights to
examine collective action (e.g., provision of public goods,
organization of trade unions, international externalities, riots
or voting participation)



Collective action

I In prisoner’s dilemma types of situation:

(a) no one finds it profitable to cooperate alone
(b) value of the others’ cooperation when I free-ride exceeds value

of joint cooperation minus cost to cooperate for me

I Because of (a): no deviation from non-cooperative eq.
I Because of (b): incentive to deviate from cooperative eq.

I In chicken’s game types of situation:
I No (a)—each player prefers lonely cooperation than joint

non-cooperation—but (b) still holds
I “Privileged groups” (Olson 1965)
I We observe free-riding in equilibrium
I Incentive to pre-commitment into non-cooperation

I In assurance dilemma types of situation:
I No (b) but (a) still holds
I Cooperative equilibrium becomes stable
I Heterogeneous agents & thresholds models (Granovetter 1978)



Contributing to a public good

I Let’s solve this game together in class:
I Each of n people chooses whether or not to contribute a fixed

amount toward the provision of a public good. The good is
provided iff at least k people contribute, where 2 ≤ k ≤ n; if it
is not provided, contributions are not refunded. Each person
ranks outcomes from best to worst as follows: (i) any outcome
in which the good is provided and she does not contribute, (ii)
any outcome in which the good is provided and she
contributes, (iii) any outcome in which the good is not
provided and she does not contribute, (iv) any outcome in
which the good is not provided and she contributes



Sketch of the solution

I Define k∗ as number of contributing players in equilibrium

I k∗ > k : no Nash (contributors have incentive to deviate)

I k∗ = k : NE

I 0 < k∗ < k : no Nash (contributors have incentive to deviate)

I k∗ = 0: NE

I Therefore, set of Nash equilibria: { k players contribute and
(n-k) don’t } ∪ { nobody contributes }



Voters’ turnout

I Let’s solve this game together in class:
I Two candidates, A and B, compete in an election. Of the n

citizens, k support candidate A and m (= n − k) support
candidate B. Each citizen decides whether to vote, at a cost,
for the candidate she supports, or to abstain. A citizen who
abstains receives the payoff of 2 if the candidate she supports
wins, 1 if this candidate ties for first place, and 0 if this
candidate loses. A citizen who votes receives the payoffs 2− c ,
1− c , and −c in these three cases, where 0 < c < 1

I For k = m = 1, is the game the same (except for the names of
the actions) as any considered so far?

I What is the set of Nash equilibria for k = m?
I What is the set of Nash equilibria for k < m?



Sketch of the solution

I If k = m = 1 we have prisoner’s dilemma
I (vote,vote) is the non-cooperative equilibrium

I If k = m > 1 define nA (nB) as number of those voting A (B)
I nA = nB = k is Nash as no incentive to deviate [1− c → 0]
I nA = nB < k : no Nash as incentive to deviate from ’abstain’

to ’vote’ [1→ 2− c]
I nA = nB + 1 (or nB = nA + 1): no Nash as supporters of losing

candidate have incentive to deviate from ’abstain’ to ’vote’
[0→ 1− c]

I nA ≥ nB + 2 (or nB ≥ nA + 2): no Nash as supporters of
winning candidate have incentive to deviate from ’vote’ to
’abstain’ [2− c → 2]

I Therefore: unique NE where everybody votes

I If k < m we have no NE
I It’s enough to apply the same arguments of above to each case



Interest groups’ contributions

I Let’s solve this game together in class:
I Two interest groups I = {1, 2} seek to influence a government

policy p ∈ [0, 1]. Group 1’s most preferred policy is 0 and
group 2’s most preferred policy is 1. The government prefers
1/2, but may be influenced by the campaign contributions.
Each group chooses to contribute an amount: si ∈ [0, 1]. The
final policy is: p(s1, s2) = 1/2− s1 + s2. The groups make
their choices simultaneously, and the government keeps all of
the contributions to buy advertisements for the next election.
The interest groups each have utility functions:

u1(s1, s2) = −(p(s1, s2))2 − s1

u2(s1, s2) = −(1− p(s1, s2))2 − s2

I What is the set of Nash equilibria (if any)?



Sketch of the solution

I The two groups maximize w.r.t. their own contribution:

u1 = −(1/2− s1 + s2)2 − s1

u2 = −(1/2 + s1 − s2)2 − s2

FOC1 → 2(1/2− s1 + s2)− 1 = 0

SOC1 → −2 < 0

FOC2 → 2(1/2 + s1 − s2)− 1 = 0

SOC2 → −2 < 0

I Therefore, infinite set of NE such that s1 = s2 as
s1 = b1(s2) = s2 and s2 = b2(s1) = s1



Strategic complements

I Let’s solve this game together in class:
I Two individuals are involved in a synergistic relationship. If

both individuals devote more effort to the relationship, they are
both better off. For any given effort of individual j , the return
to individual i ’s effort first increases, then decreases.
Specifically, an effort level is a non-negative number, and
individual i ’s preferences (for i = 1, 2) are represented by the
payoff function ai (c + aj − ai ), where ai is i ’s effort level, aj is
the other individual’s effort level, and c > 0 is a constant

I What is the set of Nash equilibria (if any)?



Sketch of the solution

I Each agent i = 1, 2 maximizes w.r.t. ai :

{−a2i + ajai + cai}

FOCi → −2ai + aj + c = 0→ ai = bi (aj) = (aj + c)/2

SOCi → −2 < 0

I Solving system of two equations in two unknowns:
a1 = a2 = c is NE



Strategic substitutes

I Let’s solve this game together in class:
I Two countries must decide how much to invest in pollution

abatement. Their strategies are levels of investment s1 ≥ 0 and
s2 ≥ 0. Each country pays a cost c(si ) = ki · si . Let k1 < k2 so
that country 1 abates a given amount of pollution at a lower
cost than country 2. The total amount of pollution affects
citizens of both countries so that the utility of abatement is
based on the total investment, ui (s1, s2) =

√
s1 + s2. The

payoff for each country is thus equal to:

√
s1 + s2 − (ki · si )

I What is the set of Nash equilibria (if any)?



Sketch of the solution

FOC1 → s1 = b1(s2) = (1/2k1)2 − s2

FOC2 → s2 = b2(s1) = (1/2k2)2 − s1

I SOC verified

I No solution to system of equations as k1 < k2
I But: corner NE at s1 = (1/2k1)2 and s2 = 0

I High-cost country completely free-rides on low-cost country

I What happens if k1 = k2?



Calculating Nash equilibria in pure strategies

I We’ve seen different ways to calculate Nash equilibria in pure
strategies

I (1) Look for best responses in (matrix) representation of a
finite-strategy game

I (2) Check each strategy profile (or interval of strategy profiles)
and evaluate if there are players with incentive to deviate

I (3) Unconstrained optimization to identify best response
correspondences/functions through first-order and
second-order conditions

I Pay attention: these conditions are sufficient but not necessary
to have Nash equilibria. There may be corner solutions or
discontinuous payoff functions



Mixed strategies

I So far we have only considered Nash equilibria in pure
strategies

I Some games do not have Nash equilibria in pure strategies

I We have seen this possibility in the “matching pennies”
interaction

Heads Tails

Heads (-1,1) (1,-1)

Tails (1,-1) (-1,1)

I Each player wants to “out guess” the other



Mixed strategies (contd.)

I Best responses are in bold below

Heads Tails

Heads (-1,1) (1,-1)

Tails (1,-1) (-1,1)

I There is no pair such that each player’s strategy is a best
response to the other player’s strategy

I There is no pure strategy Nash equilibrium



Mixed strategies (contd.)

I What is a “reasonable” prediction for this game?

I Each player should choose Heads some of the time and Tails
some of the time

I We capture this formally by the concept of mixed strategies

I A mixed strategy is a probability distribution over pure
strategies

I Let (q, 1−q) be a mixed strategy for player 1

I Player 1 plays Heads with probability q, and tails with
probability 1−q

I Pure strategies are a special cases of mixed strategies: (1, 0)
is the strategy Heads, while (0, 1) is the strategy Tails



Mixed strategies (contd.)

I Finding mixed strategies is straightforward, but a bit
non-intuitive at first

I We must find an equilibrium mixed strategy for player 1 that
makes player 2 indifferent between playing a2 and b2

I Suppose player 1 plays the mixed strategy (q, 1−q)

I Expected payoff of Heads for player 2: q − (1−q) = 2q − 1

I Expected payoff of Tails for player 2: −q + (1−q) = 1− 2q

I If q > 1
2 , then player 2 should always play Heads, and if

q < 1
2 , then he should always play Tails

I If q = 1
2 , then player 2 is indifferent between playing Heads

and Tails



Mixed strategies (contd.)

r

1

Player 2' Best 

1/2 10

Response

q



Mixed strategies (contd.)

I A similar set of calculations holds for player 1

I Let (r , 1−r) be player 2’s mixed strategy

I Expected payoff of Heads for player 1: −r + (1−r) = 1− 2r

I Expected payoff of Tails for player 1: r + (1−r) = 2r − 1

I So, if r < 1
2 , then player 1 should always play Heads, and if

r > 1
2 , then he should always play Tails

I If r = 1
2 , then he is indifferent between playing Heads and

Tails

I s1 = (12 ,
1
2) and s2 = (12 ,

1
2) constitute the unique Nash

equilibrium to the game



Mixed strategies (contd.)
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Mixed strategies (contd.)
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Mixed strategies (contd.)

I Suppose that player 2 (1) wins (loses) an extra penny from
player if the coins match and are both Heads

Heads Tails

Heads (-2,2) (1,-1)

Tails (1,-1) (-1,1)

I Suppose player 1 plays the mixed strategy (q, 1−q)

I If q = 2
5 then player 2 is indifferent between playing Heads

and Tails

I Suppose player 2 plays the mixed strategy (r , 1−r)

I Player 1 is indifferent between playing Heads and Tails if r = 2
5

I The strategies s1 = (25 ,
3
5) and s2 = (25 ,

3
5) constitute the

unique Nash equilibrium



Mixed strategies (contd.)

r

1 Player 1' Best 
Response

2/52/5

Player 2' Best 

2/5 10

Response

q



Mixed strategies (contd.)

I Suppose that player 2 wins an extra penny from player if the
coins match and are both Heads but we do not change the
payoff of player 1

I Whose mixed strategies will change?

I Only the strategies of player 1 will change so that it makes
player 2 indifferent

I While playing s2 = (12 ,
1
2) player 2 continues to make player 1

indifferent

I The strategies s1 = (25 ,
3
5) and s2 = (12 ,

1
2) constitute the

unique Nash equilibrium



Mixed strategies (contd.)

I We can also look for mixed strategy equilibria in game with
pure strategy equilibria

I Consider this game

Baseball Opera

Baseball (2,1) (0,0)

Opera (0,0) (1,2)

I It has two pure strategy equilibria: (Baseball,Baseball) and
(Opera,Opera)

I It also has one mixed strategy equilibrium



Mixed strategies (contd.)

I Suppose the man plays the mixed strategy (q, 1−q), where q
is the probability he plays Baseball

I If the woman plays Baseball, her expected payoff is q

I If she plays Opera, her expected payoff is 2(1−q)

I She is indifferent between playing Baseball and Opera iff
q = 2

3

I Suppose the woman plays the mixed strategy (r , 1−r)

I If the man plays Baseball, his expected payoff is 2r

I If he plays Opera, his expected payoff is 1−r
I He is indifferent between playing Baseball and Opera iff r = 1

3

I The strategies s1 = (23 ,
1
3) and s2 = (13 ,

2
3) constitute a Nash

equilibrium



Mixed strategies (contd.)

Player 1' Best q
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q
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Mixed strategies (contd.)

I Once we allow for mixed strategies, it is not too difficult to
show that any game with a finite number of players and finite
strategy sets for each player has at least one Nash equilibrium
(this is the famous Nash’s theorem)

I Mixed strategies might seem a little awkward in certain
setups, e.g., politics

I Later in the course we will see that we can rationalize the use
of mixed strategies in an incomplete information set up. But
we can already think about them from different angles



Summing up (formally)

I Given player i ’s (finite) pure strategy set Si , a mixed
strategy for player i (σi ) assigns to each pure strategy si ∈ Si
a probability σi (si ) ≥ 0 that it will be played, with∑

si∈Si σi (si ) = 1

I If ui (.) VNM utility function, payoffs are given by expected
utility: Eσ[ui (s)]

I A mixed strategy profile (σ1, ..., σI ) is a Nash equilibrium of
the game ΓN iff for every i = 1, ..., I :
ui (σi , σ−i ) ≥ ui (σ

′
i , σ−i ), for all σ′i ∈ ∆(Si ), where, if we have

M pure strategies, ∆(Si ) = {(σ1i , ..., σMi ) ∈ RM : σmi ≥ 0 for
all m = 1, ...,M and

∑M
m=1 σmi = 1}

I Necessary and sufficient condition for mixed strategy σ to be
Nash is that each player is indifferent among all pure strategies
she plays with positive probability, and that these are at least
as good as any pure strategy she plays with zero probability



Two (important) theorems

I Note: Allowing for mixed strategies doesn’t merely involve the
solution, but affects the characteristics of the game. Payoffs
no longer cardinal, but expected-utility interpretation

Theorem 1 (Nash’s theorem). Every game ΓN = 〈I ,∆(Si ), ui (.)〉
in which the sets S1, ...,SI have a finite number of elements has a
mixed strategy Nash equilibrium

Theorem 2. A Nash equilibrium exists in game ΓN = 〈I ,Si , ui (.)〉
if for all i = 1, ..., I :

1. Si is a nonempty, convex, and compact subset of some
Euclidean space RM

2. ui (s1, ..., sI ) is continuous in (s1, ..., sI ) and concave in si

I Note: Finite strategy set cannot be convex. In a sense, mixed
strategies “convexify” strategy sets and produce well-behaved
payoff functions



Dominated and rationalizable strategies

I Strategy si ∈ Si is strictly dominated for i if there exists
s ′i ∈ Si such that for all s−i ∈ S−i : ui (s

′
i , s−i ) > ui (si , s−i )

I It’s weakly dominated if: ui (s
′
i , s−i ) ≥ ui (si , s−i )

I If we assume all players to be rational and common knowledge
of it: iterated elimination of strictly dominated strategies

I Unlike strictly dominated s, weakly dominated s cannot be
ruled out based solely on principles of rationality

I In game ΓN the strategies that survive the iterated removal of
strategies that are never a best response are known as player
i ’s rationalizable strategies

I Strictly dominated s is never a best response. But s might
never be best response even though it’s not strictly dominated

I For strictly dominated and rationalizable strategies (but not
for weakly dominated), the order of removal doesn’t affect the
set of strategies that remain at the end of the iteration



Iterated elimination of dominated strategies

I Consider strategies 1 and 2. 1 is strictly dominated for a
player by 2, if for each possible combination of the other
players’ strategies, player’s payoff from playing 1 is strictly less
than her payoff from playing 2

Left Middle Right

Up (1,0) (1,2) (0,1)

Down (0,3) (0,1) (2,0)

I Right is dominated by Middle for player 2

I If we assume player 2 will not play Right, it yields the
following game:

Left Middle

Up (1,0) (1,2)

Down (0,3) (0,1)



Iterated elimination of dominated strategies (contd.)

Left Middle

Up (1,0) (1,2)

Down (0,3) (0,1)

I In this game, Down is dominated by Up for player 1

I If we assume player 1 will not play Down, it yields the
following game:

Left Middle

Up (1,0) (1,2)



Iterated elimination of dominated strategies (contd.)

Left Middle

Up (1,0) (1,2)

I In this game, Left is dominated by Middle for player 2

I We assume player 2 will not play Left

I This yields a predicted strategy pair: (Up,Middle)

I (Up,Middle) is an equilibrium under iterated elimination of
dominated strategies



Iterated elimination of dominated strategies (contd.)

I Unfortunately, eliminating dominated strategies generally does
not get us very far

Left Center Right

Top (0,4) (4,0) (5,3)

Middle (4,0) (0,4) (5,3)

Bottom (3,5) (3,5) (6,6)

I No strategies are dominated by any others, for either player

I Nash equilibrium is a solution concept that produces much
tighter predictions in a broader class of games

I Let’s consider a few more examples to better understand the
relationships between strict dominance, weak dominance, and
rationalizability (⇒ in sections)



What’s next

I In the next class, we’ll analyze rational models of electoral
competition that can be studied as static games of complete
information, and therefore solved by Nash equilibrium

I Median voter theorem
I Hotelling-Downs model of (spatial) electoral competition
I Electoral competition with partisan candidates
I Electoral competition with partisan candidates and uncertainty
I Electoral competition with valence advantage


