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Lectures 3: Overview

I Median voter theorem: General intuition and discussion

I Hotelling-Downs model of (spatial) electoral competition

I Tragedy of the commons: You’ll discuss this with Jeremy



Preliminaries: Condorcet paradox

I Example of ordinal preferences of three voters over three
alternatives

I Voter 1: a �1 b �1 c
I Voter 2: c �2 a �2 b
I Voter 3: b �3 c �3 a

I There’s no Condorcet winner by pairwise majority voting
I a �

M
b �

M
c �

M
a

I Electoral cycles and agenda manipulation

I Even with well-behaved individual preferences (i.e., reflexive,
complete, and transitive) we get intransitive aggregate
preferences by majority voting

I Possible way out (restricted domain in Arrow’s impossibility
theorem; just reference for those familiar, we don’t care here):

I Voter 2: c �2 b �2 a
I With these preferences, b is the Condorcet winner



Preliminaries: Single-peaked preferences

I What’s the matter with the first version of voter 2’s
preferences? Answer: They are not single-peaked

I Preferences are single-peaked if: u(y) > u(z) iff
|y − x | < |z − x |, where x is the bliss point

I Examples of single-peaked preferences:

a b c a b c a b c



Example of non-single-peaked preferences

a b c

I Applications: Public health care; war in Afghanistan



Preliminaries: Median voter theorem

Median voter theorem. If preferences are single-peaked along a
one-dimensional economic policy, the median voter’s bliss point rep-
resents the equilibrium outcome of the majoritarian voting game

I Simple proof. Bliss points of N voters: (x1, ..., xN)

I NR voters have xi ≥ xm; NL voters have xi ≤ xm
I If NR ≥ N/2 and NL ≥ N/2, xm is the MV’s bliss point

I xm cannot lose under majority rule. In fact:

I If z < xm at least NR/N ≥ 1/2 vote share in favor of xm
I If z > xm at least NL/N ≥ 1/2 vote share in favor of xm

Downs theorem. Suppose a Condorcet winner exists and denote it
as xc . Then, the unique Nash equilibrium of a game in which two
candidates/parties compete to win the election is x∗1 = x∗2 = xc



Hotelling-Downs model of electoral competition

I Players: candidates/parties 1 and 2

I Strategies: x1, x2 ∈ [0, 1]

I Full commitment to these policy platforms

I Voters sincerely vote for the closest platform

I Voters’ bliss points uniformly distributed in [0, 1]

I Parties just care about winning (office-seeking)

I Vote share of 1: (x1 + x2)/2

I Vote share of 2: 1− (x1 + x2)/2

I Preferences: both parties get W in case of victory, W /2 in
case of a tie, 0 if they lose



Hotelling-Downs model of electoral competition (contd.)

I x∗1 = x∗2 = 1/2 is the unique Nash equilibrium of this game

I To prove this, see that:
I No incentive to deviate from this equilibrium: otherwise payoff

from 0 to -1
I If there is a tie at x∗1 = x∗2 6= 1/2, both candidates have

incentive to deviate to 1/2: payoff from 0 to 1
I In all of the other equilibria with no tie, the losing candidate

can deviate to 1/2 and at least tie: payoff from -1 to 0, or
from -1 to 1

I In class, we have proved it also by deriving and drawing the
best-response correspondence of the two candidates. You
should get familiar with this method



Best-response correspondences in Hotelling-Downs

3.3 Electoral competition 71

In summary, candidate 1’s best response function is defined by

B1(x2) =





{x1: x2 < x1 < 2m − x2} if x2 < m
{m} if x2 = m
{x1: 2m − x2 < x1 < x2} if x2 > m.

Candidate 2 faces exactly the same incentives as candidate 1, and hence has the
same best response function. The candidates’ best response functions are shown
in Figure 71.1.

↑
x2
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m

B1(x2)
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x1 →m

m

B2(x1)

Figure 71.1 The candidates’ best response functions in Hotelling’s model of electoral competition with
two candidates. Candidate 1’s best response function is in the left panel; candidate 2’s is in the right
panel. (The edges of the shaded areas are excluded.)

If you superimpose the two best response functions, you see that the game has
a unique Nash equilibrium, in which both candidates choose the position m, the
voters’ median favorite position. (Remember that the edges of the shaded area,
which correspond to pairs of positions that result in ties, are excluded from the
best response functions.) The outcome is that the election is a tie.

As in the case of Bertrand’s duopoly game in the previous section, we can make
a direct argument that (m, m) is the unique Nash equilibrium of the game, with-
out constructing the best response functions. First, (m, m) is an equilibrium: it
results in a tie, and if either candidate chooses a position different from m then she
loses. Second, no other pair of positions is a Nash equilibrium, by the following
argument.

• If one candidate loses then she can do better by moving to m, where she
either wins outright (if her opponent’s position is different from m) or ties
for first place (if her opponent’s position is m).

• If the candidates tie (because their positions are either the same or symmetric
about m), then either candidate can do better by moving to m, where she wins
outright.

Our conclusion is that the competition between the candidates to secure a ma-
jority of the votes drives them to select the same position, equal to the median of


