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Overview

I Finitely repeated games
I Prisoner’s dilemma
I Multiple-equilibria stage games

I Infinitely repeated games
I Trust game
I Prisoner’s dilemma
I Folk Theorem

I Applications
I Cooperation between political parties
I Collusion in Cournot duopoly (w/ Jeremy in sections)



Kick-off definitions

Definition. Given a game Γ, defined as the stage game, let Γ(T )
denote the finitely repeated game in which Γ is played T times, with
the outcomes of all preceding plays observed before the next play
begins. The payoffs in Γ(T ) are simply the sum of the payoffs from
the T stage games.

Definition. Given a stage game Γ, let Γ(∞, δ) denote the infinitely
repeated game in which Γ is repeated forever and the N players of Γ
have discount factors δ = (δ1, ..., δN). For each play t, the outcomes
of the (t−1) preceding plays of the stage game are observed before
stage t begins. Each player’s payoff in Γ(∞, δ) is the present value
of the player’s payoffs from the infinite sequence of the stage games.



Finitely repeated games with unique NE in the stage game

I In repeated games, players play the same “stage game”
repeatedly, and observe the moves played in previous stage
games as they play

I We first consider the case of finitely repeated games

I In finitely repeated games, if there is a unique Nash
equilibrium to the stage game, then the unique subgame
perfect equilibrium in the repeated game is for the players to
play the Nash equilibrium of the stage game in every period

I We can simply show this by backward induction in the case of
the prisoner’s dilemma



Finitely repeated prisoner’s dilemma

I To see this, consider as the stage game the prisoners’ dilemma
with the following payoffs:

D C

D (1,1) (5,0)

C (0,5) (4,4)

I There is a unique Nash equilibrium of the stage game: (D,D)



Finitely repeated prisoner’s dilemma (contd.)

I If this game is repeated twice (T = 2), the extensive form is:
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Finitely repeated prisoner’s dilemma (contd.)

I Regardless of what happens in the first period, players 1 and 2
will both defect in the second period

I Thus, players know that (C,C) in the first period leads to the
payoff (5, 5)

I Similar calculations for the other branches yield the following
payoffs at the first period:
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Finitely repeated prisoner’s dilemma (contd.)

I Basically, we are adding the payoffs of (D,D) in the second
period to the first period strategies

I The first-period strategic interaction is thus captured by the
following (fictitious) strategic representation:

D C

D (2,2) (6,1)

C (1,6) (5,5)



Finitely repeated prisoner’s dilemma (contd.)

I Both players will defect in the first period as well

I This logic clearly generalizes to any finite number of periods
T , as the game “unravels from the end”

I And the result is clearly more general (i.e., it goes beyond the
repeated prisoner’s dilemma)

Theorem. If the stage game Γ has a unique NE, then, for any finite
T , the repeated game Γ(T ) has a unique SPNE: The NE of Γ is
played in every stage.



Multiple-equilibria stage games

I If there are multiple NE in the stage game, the situation is
more interesting (i.e., let the cherry-picking begin)

I Consider a two-period game with the following stage game
(see Gibbons):

D C R

D (1,1) (5,0) (0,0)

C (0,5) (4,4) (0,0)

R (0,0) (0,0) (3,3)

I There are two Nash equilibria: (D,D) and (R,R)



Multiple-equilibria stage games (contd.)

I Players may believe that different outcomes will happen in the
second period depending on what happens in the first period

I Our goal is to construct a subgame perfect equilibrium where
there is cooperation (after all, we are “benevolent”
cherry-pickers...)

I How can we do this?

I We know that we cannot achieve this in the second stage of
the game (backward induction)

I Then, the idea is to play with the beliefs about the NE players
will play in the second stage of the game to induce
cooperation in the first one



Multiple-equilibria stage games (contd.)

I Suppose players expect the NE (R,R) to be played in the
second period if the players play (C ,C ) in the first period

I However, they expect the NE (D,D) to be played if either
player plays D or R in the first period

I Then, at the first period the anticipated payoffs are:

D C R

D (2,2) (6,1) (1,1)

C (1,6) (7,7) (1,1)

R (1,1) (1,1) (4,4)

I There are three Nash equilibria of this game with the
mentioned beliefs: (C ,C ), (D,D), (R,R)



Multiple-equilibria stage games (contd.)

I Thus, there are three subgame perfect equilibria in the
repeated game with the mentioned beliefs: ((C ,C ), (R,R)),
((D,D), (D,D)), and ((R,R), (D,D))

I Cooperation in the first period is sustainable as an equilibrium

I Potential problem: Why should the players expect the
(D,D) equilibrium ever to happen in the second period?

I This outcome is Pareto inferior to the (R,R) equilibrium

I Playing with beliefs, you can get many multiple equilibria
I Any combination of the Nash equilibria of the stage game are

also subgame perfect equilibria



Multiple-equilibria stage games (contd.)

I Consider a two-period game with the following stage game
(see, again, Gibbons):

D C R P Q

D (1,1) (5,0) (0,0) (0,0) (0,0)

C (0,5) (4,4) (0,0) (0,0) (0,0)

R (0,0) (0,0) (3,3) (0,0) (0,0)

P (0,0) (0,0) (0,0) (4,1/2) (0,0)

Q (0,0) (0,0) (0,0) (0,0) (1/2,4)

I There are 4 Nash equilibria: (D,D), (R,R), (P,P), (Q,Q)

I (R,R) Pareto dominates (D,D)

I But (R,R), (P,P), and (Q,Q) are not Pareto dominated by
any other equilibrium



Multiple-equilibria stage games (contd.)

I Assume the following beliefs about what NE will prevail in the
second stage based on the outcome of the first stage:

I (R,R) if (C ,C )
I (P,P) if (C ,w), with w 6= C
I (Q,Q) if (x ,C ), with x 6= C
I (R,R) if (y , z), with y , z 6= C

D C R P Q

D (4,4) (5.5,4) (3,3) (3,3) (3,3)

C (4,5.5) (7,7) (4,0.5) (4,0.5) (4,0.5)

R (3,3) (0.5,4) (6,6) (3,3) (3,3)

P (3,3) (0.5,4) (3,3) (7,3.5) (3,3)

Q (3,3) (0.5,4) (3,3) (3,3) (3.5,7)

I The (fictitious) first-stage game has three Nash equilibria:
(D,D), (C ,C ), (R,R)



Multiple-equilibria stage games (contd.)

I Again, we have shown that cooperation is sustainable in the
subgame perfect equilibrium under an appropriate set of beliefs

I And now the players don’t need to use a Pareto dominated
outcome as punishment device (as it was instead the case in
the previous example)

I Each player has a Pareto undominated outcome which can be
“used” to punish the other player

I That’s why, unlike the previous example, if punishment is
called, the punisher doesn’t want to renegotiate (loosely
speaking)



Infinitely repeated trust game

I Consider the following stage (trust) game:

(1,1)	2	
(-1,2)	1

(0,0)	

Trust	

Not	
trust	

Honor	

Betray	

I The stage game has a unique SPNE with outcome (0, 0)
(which is also the unique NE)

I We assume that it’s repeated infinitely with δ1 = δ2 = δ



Infinitely repeated trust game (contd.)

I Define the grim trigger strategy profile for the players as:
I Player 1 plays T in the first period. Thereafter, she plays T if

in all previous periods all plays have been T and H; she plays
N otherwise

I Player 2 plays H (if given to act) if in all previous periods all
plays have been T and H; she plays B otherwise

I Under the threat of trigger strategies, cooperation is
sustainable (i.e., (T ,H) is an equilibrium outcome resulting
from the above Nash strategy profile) iff δ ≥ 1/2

I In fact, player 2 has no incentive to defect from cooperation if
1

1−δ ≥ 2⇒ δ ≥ 1/2
I Player 1 has no incentive to defect from cooperation,

otherwise she gets zero forever (she cannot cheat here)



Infinitely repeated trust game (contd.)

I More generally, if we define C as the one-stage payoff from
cooperation, D from defection, and P from punishment, with
D > C > P, player 2 sticks to cooperation iff

C

1− δ
≥ D +

δP

1− δ

δ ≥ D − C

D − P
= K

I If C decreases and/or P increases and/or D increases, then K
increases and cooperation is harder to sustain as equilibrium
outcome



Infinitely repeated prisoner’s dilemma

I Suppose the prisoner’s dilemma from before is repeated
infinitely and payoffs are discounted by a discount factor δ < 1

D C

D (1,1) (5,0)

C (0,5) (4,4)

I Since there is no “last period” we cannot solve the game
backwards from the end

I Instead, we postulate a pair of strategies, then check whether
these strategies constitute an equilibrium

I As before, an equilibrium is subgame perfect iff the strategies
are a Nash equilibrium in all subgames

I In the repeated-game context, each period begins a subgame
I Be careful not to confuse stage games with subgames



Infinitely repeated prisoner’s dilemma (contd.)

I In infinitely repeated games, if players are patient
enough, there are tons of subgame perfect equilibria

I We start by postulating one of the possible equilibria in which
both players adopt grim trigger strategies

I In the first period, player i plays C . In period t, if the
outcomes of all preceding stages (t − 1) have been (C ,C ),
she plays C ; otherwise she plays D forever after

I Is cooperation sustainable as an equilibrium outcome with
these (equilibrium) strategies? Is it NE? Is it SPNE?



Infinitely repeated prisoner’s dilemma (contd.)

I Sustained cooperation delivers → 4
1−δ

I Deviating from cooperation delivers → 5 + δ
1−δ

I The former quantity is greater than the latter iff δ ≥ 1
4

I Note: Playing D in every period is NE (and also SPNE).
Thus, the punishment strategy is credible

I If players are patient enough, i.e., as long as δ ≥ 1
4 , then

cooperating every period is a NE outcome (sustained by the
off-equilibrium punishment of grim trigger strategies)



Infinitely repeated prisoner’s dilemma (contd.)

I Are these strategies also SPNE?
I There are two types of subgames:

(i) All preceding outcomes are (C,C)
(ii) At least one preceding outcome is different from (C,C)

I First is like original game, so trigger strategies are NE there
too as long as δ ≥ 1

4

I Second is also infinitely repeated prisoner’s dilemma, for
which (D,D) forever is NE

I Therefore, grim trigger strategies equilibrium is subgame
perfect iff δ ≥ 1

4

I It can also be shown by single-deviation principle

I Note: Trigger strategies where first player only punishes (.,D)
as opposed to (D,D) is NE but not SPNE



Infinitely repeated prisoner’s dilemma (contd.)
Folk Theorem

I Almost any feasible and individually rational outcome can be
sustained as a subgame perfect equilibrium

I For the prisoners’ dilemma above, the payoffs sustainable as
subgame perfect equilibria are:

So,

VC =
4

1¡±
The strategies \play (C;C) every period" constitute a subgame perfect equilibrium if neither
player has an incentive to play D at any period t. What should a player anticipate about play
in future periods if he plays D instead of C at period t? Suppose each player anticipates that
their opponent will play D in every period from t+1 on. This is called a \trigger strategy",
or \grim trigger strategy." If player 1 anticipates this, then he knows that he will also play
D in every period from t+1 on, so he knows his payo® will be 1 in all periods t+1; t+2; :::.
Thus, his continuation value from period t on will be:

VD = 5 +
1X

t=1
±t[1]

Now,
P1
t=0 ±t = 1=(1¡±), so this is

VD = 5 +
±

1¡±
So, the strategies \play (C;C) every period" constitute a subgame perfect equilibrium i®

VC ¸ VD

or,
4

1¡± ¸ 5 +
±

1¡±
or, ± ¸ 1

4

Thus, if players are patient enough, i.e., as long as ± ¸ 1
4, then cooperating every period is

a subgame perfect equilibrium.
There are two further di±culties, however. First, if players are patient enough, then

almost any feasible and \individually rational" outcome can be sustained as a subgame
perfect equilibrium. For the prisoners' dilemma above, the payo®s sustainable as subgame
perfect equilibria are:

(4,4)

(1,1)
(5,0)

(0,5)

x

x2

1

47I The set of feasible outcomes is the set bounded by the points
(0, 5), (1, 1), (5, 0) and (4, 4)

I The set of “individually rational” payoffs are those with
x1 > 1 and x2 > 1



Infinitely repeated prisoner’s dilemma (contd.)
Folk Theorem (contd.)

I Define π as the discounted average of the stream (π1, π2, ...)

π = (1− δ)
∞∑
t=1

δt−1πt

I Define v i as the minimax value of player i

v i = mins−i

[
maxsi ui (si , s−i )

]
I Note: If δ close to 1, all weighted averages of stage-game

payoffs are feasible as average payoffs of Γ(∞, δ)

Folk Theorem. For every feasible average payoff vector v such that
vi > v i for all i , there exists a δ′ < 1 such that for all δ ∈ (δ′, 1)
there is a NE of Γ(∞, δ) with payoffs v .



Infinitely repeated prisoner’s dilemma (contd.)

I The use of grim trigger strategies raises the question of
renegotiation (loosely speaking)

I Off the equilibrium path, players are stuck in a phase of
“punishment forever”

I It seems plausible that they would want to renegotiate to a
better outcome

I The problem is that, if players expect such renegotiation to
occur, then the initial threat to move to a “punishment
phase” becomes weaker

I Let’s postulate another possible equilibrium with a “shorter”
punishment phase



Infinitely repeated prisoner’s dilemma (contd.)
Tit-for-tat

I Tit-for-tat strategies: Cooperate in the first stage and then
in any subsequent stage use the action that the other player
chose in the previous stage

I If C forever → 4/(1− δ)

I If D forever → 5 + δ/(1− δ)

I If D and then back to tit-for-tat → 5/(1− δ2)

I Hence, for tit-for-tat to be NE, both conditions must hold:

4

1− δ
≥ 5 +

δ

1− δ
⇒ δ ≥ 1

4

4

1− δ
≥ 5

1− δ2
⇒ δ ≥ 1

4



Infinitely repeated prisoner’s dilemma (contd.)
Tit-for-tat (contd.)

I But is it also SPNE?

I By single-deviation principle, in the subgames following
unilateral defection, player i (the punisher) needs to prefer
oscillation to cooperation forever in order to carry out the
punishment ⇒ δ ≤ 1

4

I In the subgames following cooperation in every preceding
period, player i needs to prefer cooperation forever to
oscillation ⇒ δ ≥ 1

4

I Therefore, SPNE iff δ = 1
4 (very razor-edge condition)

I Between the infinite and the one-period punishment, there are
many intermediate punishment strategies that, under certain
parameter conditions, can sustain cooperation in equilibrium



Cooperation between political parties

I Suppose two parties compete for control of government

I There is a sequence of elections, and after each election the
winning party implements a policy

I The parties have policy preferences over the policy space [0, 1]

I Party 1’s preferences are given by u1(xt) = −x2t , and party 2’s
preferences are given by u2(xt) = −(xt − 1)2, where xt is the
policy enacted in period t

I Party 1’s ideal point is thus at z1 = 0 and party 2’s ideal point
at z2 = 1

I The parties discount future payoffs using a common discount
factor, δ



Cooperation between political parties (contd.)

I In each election it is uncertain which party will win

I Assume the probability that party 1 wins each election is fixed
at p ∈ (0, 1)

I The stage game is simple: nature chooses a winning party,
and that party then chooses a policy

I In equilibrium, the party that wins simply implements its ideal
point, since this is a dominant strategy

I If the one-shot equilibrium is repeated over and over, then
policy flips back and forth between 0 and 1; the expected
value is p[0] + (1− p)[1] = (1− p)



Cooperation between political parties (contd.)

I Because the parties are risk-averse, they would rather
cooperate and have more policy stability

I For example, both parties would be better off if the expected
policy 1− p was enacted in every period

I To see this, let Vi (x1, x2) be party i ’s total discounted
expected payoff when party 1 enacts the policy x1 in every
period and party 2 enacts the policy x2 in every period

I Then, the non-cooperative equilibrium payoff for party 1 is

V1(0, 1) = −
∞∑
t=0

δt [p(0) + (1− p)(1)]

= −1− p

1− δ



Cooperation between political parties (contd.)

I The cooperative equilibrium payoff for party 1 is

V1(1− p, 1− p) = −
∞∑
t=0

δt [p(1− p)2 + (1− p)(1− p)2]

= −(1− p)2

1− δ

I Since p ∈ (0, 1), V1(1− p, 1− p) > V1(0, 1)

I The analogous holds for party 2



Cooperation between political parties (contd.)

I Can the parties achieve a cooperative equilibrium in the
infinitely repeated game?

I Consider the strategies: “Play x = 1− p as long as the other
party has played 1− p every time it has been in power;
otherwise, play your ideal point forever”

I If party 1 is in power in some period, then if it plays the
cooperative strategy its total discounted expected payoff is
V1(1− p, 1− p)

I If party 1 deviates by enacting a policy x 6= 1− p, then it
knows that party 2 will play x2 = 1 in all future periods when
party 2 is in power

I Party 1 also knows that it will play x1 = 0 in all future periods
when it is in power



Cooperation between political parties (contd.)

I Party 1’s total discounted expected payoff from that point on
is then

VD
1 = 0 + δV1(0, 1) = −δ(1− p)

1− δ
I Party 1 has no incentive to deviate if VD

1 is less than or equal
to V1(1− p, 1− p), that is, if

−(1− p)2

1− δ
≥ −δ(1− p)

1− δ
δ ≥ 1− p

I Similar calculations for party 2 show that it has no incentive
to deviate if δ ≥ p

I The cooperative equilibrium is subgame perfect iff
δ ≥ max{p, 1− p}



Cooperation between political parties (contd.)

I This cooperative equilibrium is easier to sustain when the
parties have approximately equal chances of winning each
election, i.e., when p ≈ 1

2

I When this cooperative equilibrium cannot be sustained, the
problem lies with the weaker party

I This is intuitive: If p < 1
2 , then party 1 does not expect to be

in power very often, and the “compromise” in the cooperative
equilibrium puts the policy closer to party 2’s ideal point than
party 1’s ideal point

I So, when party 1 does happen to get into power, it is much
more tempted to deviate than party 2 is



Cooperation between political parties (contd.)
Cooperation implementing the “fair” outcome

I Consider now the “fair” outcome: “play x = 1
2 each period”

I The total discounted expected payoffs under these strategies
are the same for both parties:

V1(12 ,
1
2) = V1(12 ,

1
2) = −

∞∑
t=0

δt [p(12)2+(1−p)(12)2] = − 1

4(1− δ)

I Under the “grim trigger” strategies described above, party 1
has no incentive to deviate if

− 1

4(1− δ)
≥ −δ(1− p)

1− δ

δ ≥ 1

4(1− p)



Cooperation between political parties (contd.)

I Similarly, party 2 has no incentive to deviate if

− 1

4(1− δ)
≥ − δp

1− δ

δ ≥ 1

4p

I This cooperative equilibrium is easier to sustain when p ≈ 1
2

I When the cooperative equilibrium cannot be sustained, the
problem lies with the stronger party

I If p > 1
2 , the cooperative outcome produces a stream of

policies with a lower variance than the non-cooperative
outcome, which party 1 likes

I But the cooperative outcome produces a stream of outcomes
with a mean further from party 1’s ideal point than the mean
of the non-cooperative outcome, which party 1 dislikes



Cooperation between political parties (contd.)
Limited cooperation

I What is the maximal amount of (stationary) cooperation
sustainable when “full” cooperation is not sustainable?

I Consider the symmetric case, with p = 1
2

I Our analysis so far shows that full cooperation is possible,
with x1 = x2 = 1

2 in all periods, if δ ≥ 1
2

I We want to know what is the minimal amount of divergence
sustainable as a subgame perfect equilibrium if δ < 1

2

I Consider the strategies “party 1 plays x1 = 1
2 − θ in all

periods” and “party 2 plays x2 = 1
2 + θ in all periods,” where

0 ≤ θ ≤ 1/2

I θ measures the extent of the deviation from cooperation



Cooperation between political parties (contd.)

I Let Ṽ1(x1, x2) be party 1’s total discounted expected payoff
when party 1 enacts the policy x1 in every period, party 2
enacts the policy x2 in every period, and party 1 is currently in
power:

Ṽ1(x1, x2) = −x21 −
∞∑
t=1

δt(12)[x21 + x22 ]

= −x21 − δ
2(1−δ) [x21 + x22 ]

I Similarly, when party 2 is currently in power:

Ṽ2(x1, x2) = −(1− x2)2 −
∞∑
t=1

δt(12)[(1− x1)2 + (1− x2)2]

= −(1− x2)2 − δ
2(1−δ) [(1− x1)2 + (1− x2)2]



Cooperation between political parties (contd.)

I Substituting the (limited) cooperative strategies
(x1, x2) = (12 − θ,

1
2 + θ) into Ṽ1, Ṽ1 becomes

Ṽ1(12 − θ,
1
2 + θ) = −(12 − θ)2 − δ

1−δ [14 + θ2]

I If party 1 deviates, its total discounted expected payoff is
VD
1 = − δ

2(1−δ)
I So, party 1 has no incentive to deviate iff

−(12 − θ)2 − δ
1−δ [14 + θ2] ≥ − δ

2(1−δ)
δ

1−δ [14 − θ
2] ≥ (12 − θ)2

δ
1−δ (12 − θ)(12 + θ) ≥ (12 − θ)2

θ ≥ 1
2 − δ

I Analogous calculations show that the same inequality must
hold for party 2



Cooperation between political parties (contd.)

I So, the maximal amount of “cooperation” – i.e., the minimal
amount of divergence – sustainable is given by θMIN = 1

2 − δ
I When δ = 0 (no patience) no cooperation is possible, and as δ

rises towards 1
2 cooperation increases in a smooth (in fact,

linear) fashion

I The maximally cooperative strategies are shown in the
following figurecooperative strategies are shown in the following ¯gure
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Where are we?

I We have studied dynamic games of complete information
(including repeated games)

I References:
I Lecture slides → 5 through 9 (final folder)
I Osborne → chapters 5 through 7 + 14 + 16.1
I Gibbons → chapter 2
I McCarty & Meirowitz → chapters 7 + 9 + 10.2

I Now we’ll move on to:
I Static games of incomplete information (lecture 10)
I Dynamic games of incomplete information (lectures 11-12)


